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STRUCTURAL RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AIRPLANE
HAVING WING BENDING FLEXIBILITY AND A CORRELATION
OF CALCULATED AND FLIGHT RESULTS"

By Jorn C. Housorr and Erpox E. KorpEs

SUMMARY

An analysis 18 made of the structural response to gusis of
an airplane having the degrees of freedom of vertical motion
and wing bending flexibility and basic parameters are estab-
lished. A convenient and accurate numerical solution of the
response equations 18 developed for the case of discrete-gust
encounter, an exact solution 8 made for the simpler case of
continuous-sinusoidal-gust encounter, and the procedure s
outlined for treating the more realistic condition of continuous
random aimospheric turbulence, based on the methods of
generalized harmonic analysis.

Correlation studies between flight and calculated results are
then given to evaluate the influence of wing bending flexibility
on the structural response to gusts of two twin-engine transports
and one four-engine bomber. It is shown that calculated
results obtained by means of a discrete-gust approach reveal the
general nature of the flexibility effects and lead to qualitative
correlation with flight results. In conirast, calculations by
means of the continuous-turbulence approach show good
quantitative correlation with flight results and indicate a much
greater degree of resolution of the flexibility effects.

INTRODUCTION

In the design of aircraft the condition of gust encounter has
become critical in more and more instances, mainly because
of increased flicht speeds and because of configuration
changes. Aircraft designers have therefore placed greater
emphasis on obtaining more nearly applicable methods for
predicting the stresses that develop. As a result, the number
of papers on this subject has significantly increased. (See,
for example, refs. 1 to 16.) Many of the papers have treated
the airplane as a rigid body and in so doing have dealt with
either the degree of freedom of vertical motion alone (refs.
1 to 4) or with the degrees of freedom of vertical motion and
pitch (refs. 3, 5, and 6). In the main, these rigid-body
treatments tacitly involve the concept of “discrete,”’ “‘iso-
lated” gusts, but more recently steps have been taken to
treat the more realistic condition of continuous-turbulence
encounter in an explicit manner (see refs. 6 to 9).

In addition to rigid-body effects, one of the more impor-
tant items that has been of concern in the consideration of
gust penetration is the influence that wing flexibility has on
structural response. This concern has two main aspects:

(1) that including wing flexibility may lead to the calculation
of higher stresses than would be obtained by rigid-body treat-
ment of the problem and (2) that wing flexibility may intro-~
duce some error when an airplane is used as an instrument for
measuring gust intensity. Thus, several papers have also

" appeared which treat the airplane as a flexible body. In
most of these papers the approach used involves the develop-
ment of the structural response in terms of the natural modes
of vibration of the airplane (refs. 10 to 15). In others the
approach is more unusual, as, for example, reference 16 which
deals with the simultaneous treatment of the conditions of
equilibrium between aerodynamic forces and structural de-
formation at a number of points along the wing span. What-
ever the approach, however, these flexible-body analyses have
two main shortcomings. They too have adhered to the con-
cept of simple-gust or discrete-gust encounter (ref. 10 iz an
exception) and also they are not very well suited for making
trend studies without excessive computation time.

The intent of the present report is to shed further light
upon the case of gust penetration of an airplane having the
degrees of freedom of vertical motion and wing bending. It
has several objectives: (1) to establish some of the basic pa-
rameters that are involved when wing bending flexibility is
included, (2) to develop a method of solution which is fairly
well suited for trend studies without excessive computation
time, (3) to evolve methods for treating continuous turbu-
lence as well as discrete gusts, and (4) to show the-degree.of -
correlation that can be obtained between flight-test and an-
alytical results and, through this correlation, to assess how
well flexibility effects may be analyzed. In effect, this report
is a composite of the discrete-gust studies made jointly by
the authors in references 11 and 12 and of the continuous-
turbulence studies made by the first author in reference 10
and in unpublished form.

The report is developed as follows: The equations for re-
sponse (including accelerations, displacements, and bending
moments) are derived and the basic parameters outlined. A
simple solution of these equations follows for both discrete-
gust encounter and for continuous-sinusoidal-gust encounter.
Next, the procedure for treating continuous atmospheric tur-
bulence is outlined. Then, the correlation studies involving
a comparison of flight-test results with the calculated results
obtained for both discrete-gust and continuous-turbulence
conditions are given.

1 Bupersedes NAOA TN 3008 by John O. Houbolt, 1953; also contains essential material from NAOCA TN 2763 by John O. Houbolt and Eldon E. Kordes, 1952, and NACA TN 2867

by Eldon E. Kordes and John O. Hoabolt, 1953.
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SYMBOLS

slope of lift curve

deflection coefficient for nth mode, function of
time alone

aspect ratio of wing

span of wing

chord of wing

chord of wing midspan

see equation (23b)

Young's modulus of elasticity

nondimensional gust force, I'%w(s—a) de -
[}

external applied load per unit span
acceleration due to gravity
distance to gust peak, chords
bending moment of inertia

reduced frequency, %}
nondimensional bending-moment factor
(M,=K, 2 pVUIl/LO)

wave length

aerodynamic lift per unit span of wing due to
gust

aerodynamic lift per unit span of wing due to
vertical motion of airplane

mass per unit span of wing

net incremental bending moment at wing
station 7

/2
M= f cway—y)dy

/2
My, = [ mwlg—yddy
. 1

M,

i 7

T(w), T
U

U

vV

114

w

Wy

¥

generalized mass of nth mode
incremental number of g acceleration
see equation (58a)

load intensity per unit spanwise length
see equations (18), (24), and (13)

4
distance traveled, % t, half-chords
wing aresa
time

frequency-response function

vertical velocity of gust or random disturbance

maximuim vertical velocity of gust

forward velocity of flight

total weight of airplane

deflection of elastic axis of wing, positive
upward

deflection of elastic axis in nth mode, given in
terms of unit tip deflection

distance along wing measured from airplane
center line

2

o o R

Na

b=1—¢

12

1—9¢

&(w), 2(Q)
¥

§~3 ° >3 3%.@.&:‘&‘,’3

Notation:

I
[]

7
response coefficient based on a,, _Z_}?o @y

second derivative of z, with respect to &

second derivative of 2, with respect to s

absolute value of center-line deflection of
fundamental mode in terms of unit tip

- displacement

distance interval, half-chords; also, sirain

nondimensional bending-moment parameter,

8Mn,

apcolM.,

reduced-frequency parameter, g—%—i—g

nondimensional relative-density parameter,
8M,
apcyS

mass density of air

standard deviation; salso, distance traveled,
?5:—’ 7, half-chords

function which denotes growth of lift on an
airfoil following & sudden change in angle of
attack (Wagner function)

power-spectral-density functions

function which denotes growth of lift on rigid
wing entering a sharp-edge gust (Kiissner
function)

circular frequency

natural circular frequency of vibrationof nth

" mode

frequency, Q=‘%—=$~—‘3—k
0

experimental

flexible

fuselage

input

spanwise station

number of distance intervals traveled
natural modes of vibration
nodal

output

rigid

theoretical

column matrix when used in matrix equations
square matrix

Dots are used to denote derivatives with respect to time;
primes denote derivatives with respect to 8 or ¢; a bar above
a quantity denotes the time average; and vertical bars about
a.quantity denote the modulus.
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ANALYSIS OF RESPONSE TO ARBITRARY GUSTS
EQUATIONS FOR STRUCTURAL RESPONSE

The following analysis treats the problem of determining
the stresses that develop in an airplane flying through vertical
gusts on the assumption that the airplane is free to respond
only in vertical motion and wing bending. The case of the
transient response to arbitrary gusts is considered first.
A subsequent section is then devoted to the case of random
disturbances in which explicit consideration is given the
continuous nature of atmospheric turbulence.

Equations of motion.—Itis convenient to treat the problem
simply as one of determining the elastic and translational
response of a free-free elastic beam subject to arbitrary dy-
namic forces. For dynamic forces of intensity F per unit
length, the differential equation for wing bending is, if struc-
tural damping is neglected,

yg y’ —mip+F @
where w is the deflection of the elastic axis referred to a fixed
reference plane. The task of determining the deflection that
results from the applied forces Fmay be handled conveniently
by expressing the deflection in terms of the natural free-free
vibrational modes of the wing.
The wing deflection is thus assumed to be given by the
equation
w=aWot+aw+awst . . . @)

where the a,’s are functions of time alone, and the w,’s
ropresent the deflections of the various modes along the
clastic axis of the wing, each being given in terms of a unit
tip deflection. In equation (2), w, represents the rigid-body
mode and has a constant unit displacement over the span;
the other w’s are elastic-body modes which satisfy the differ-
ential equation

2
%2 El %",L:w:mw, : @
and the orthogonality condition
b/3
MWW, dy=0 (m>=n) 4
—3/2
=M, (m=mn) (5)

In accordance with the Galerkin procedure for solving
differential equations, equation (2) is first substituted into
equation (1) to give, after use is made of equation (3),
)+F

©)

Now if this equation is multiplied through by w,, then is
integrated over the wing span, and use is made of equations

aemw taeltmwt+ .. . =—m(Gowet+dwnt+ . .
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(4) and (5), the following basic equation results:

1:753
Muiin_l_ "’naMnan':f Fwﬂdy (7)
-2

which allows for the solution of the coefficients a, if the
applied forces F are known. This equation applies for the
translational mode n=0, for which case w;=0, as well as for
all the elastic-body modes. The quantity A, appearing in
the equation is commonly called the generalized mass of
the nth mode.

For the present case of the airplane flying through & gust,
the force F'is composed of two parts: a part designated by
L, due to the vertical motion of the airplane (including both
rigid-body and bending displacements) and & part L, resulting
directly from the gust (this latter part is the gust force which
would develop on the wing considered rigid and restrgined
against vertical motion). On the basis of a sj;rlp type of
analysis, these two parts are defined as followa:

P=LAL=—20V f i [1—g (t—)ldr-+2 eV’ f =) dr

g

where {=0 is taken at the beginning of gust penetration,
1—¢(t) is a function (commonly referréd to as the Wagner
function) which denotes the growth of lift on a wing following
8 sudden change in angle of attack and for two-dimensional
incompressible flow is given by the approximation

L&

\'d
[1—¢ @]amn=1—0.165¢ " ¢ —0.335¢ ¢ ©)

and ¥(?) is a function (commonly referred to as the Kiissner
function) which denotes the growth of lift on a rigid wing
penetrating a sharp-edge gust and for two-dimensional
incompressible flow is given by the approximation

\’4 L4
' 0.5 ¢ (10)

[¥ Olamo=1—05¢
Figure 1 is a plot of equations (9) and (10).

An additional term which involves the apparent air mass
should be included in equation (8); this mass term is inertial
in character and may be included with the structural mass
(see ref. 16) although it is usually small in comparison. The
lift-curve slope @ may be chosen so as to include approximate
overall corrections for aspect ratio and compressibility effects.

The remainder of the analysis is restricted to uniform
spdnwise gusts and the assumption is made that the response
will be given with sufficient accuracy by considering only
two degrees of freedom: vertical motion and fundamental
wing bending. On this basis, if w as given by the first two
terms in equation (2) is substituted into equation (8) and
the resulting equation for F is substituted into equation (7),
the following two response equations result when = is set
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Figure 1.—Unsteady-lift functions (see eqs. (9) and (10)) where, for a sharp:edge gust, the gust force F(s) =y (s).

equal to 0 and 1, respectively:

i [ (@B a) 0 4 =l dr+ f iy (¢—7) dr
' ' (D

and .
oM, .. N
st e (it P ) g~ art
S‘ .w,l/(t—:)d-r . a2)-
where (because of mode symmetry)
b/2 N
S =2 f ¢dy
b/2
Si=2) ocwdy (13)
/2
Sz=2f cwdy
0 J

Equations (11) and (12) may be put in convenient non-
dimensional form by introducing the notation

s—g;—{ 11 (149)
or
=2, (14b)
co
and
-
2y WO (15)

where ¢, is the midspan chord of the wing and U is the maxi-
mum vertical velocity of the gust. With this notation,
equations (11) and (12) may be written 1

=2 [ "+ i —dlo—elde-+ [ '%'sb(s—a)d(: |
6

HoZo”’

and

#121"+l~l1)\’21=—2j: (rzo" +re2") [1—(8—0)]do
[ Eve—ads  (17)

where
~

__8M,
K™ 208

8,
apcyS

— @100
)‘_2V

b=

~

(18)

S
T1=§

S;

S

and a prime denotes a derivative with respect to . Equa-
tions (16) and (17) are the basic response equations in the
present analysis. The five parameters appearing in these
equations and given by equations (18) depend upon the
forward velocity, air density, lift-curve slope, and the air-

re=

7
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plane physical characteristics: the wing plan form, wing
bending stiffness, and wing mass distribution. Experience
has shown that variations in the physical characteristics
cause significant variations in the first three of the five
parameters, while the last two vary only to a minor extent.
The first three are therefore the most basic parameters; u, is
a relative-density factor, frequently referred to as a mass
parameter, and is associated with vertical free-body motion
of the airplane; g, similar to py, is the mass parameter
associated with the fundamental mode; and A, by its nature,
may be interpreted as a reduced-frequency parameter similar
to that used in flutter analysis,

It is significant to note that, if any one of the three quan-
tities 2y, z;, and v appearing in equations (16) and (17) is
specified or known, the other two may be determined. Thus,
if the gust is known, the response may be determined or.
conversely, if either z or z is known, the gust may be
determined. A useful equation relating z, and z may be
found by combining equations (16) and (17) so as to eliminate
the integral dealing with the gust. The result is the equation

;.l—i(z1”+)\221)+2 (%‘ﬁ) J: 2 [1—¢(8—0)ldo=pez’" (19)

which is used subsequently.

It may also be of interest to note that uyz’’, in effect,
defines a frequently used acceleration ratio. From equa-
tions (15) and (14), the rigid-body component of the vertical
scceleration may be written

or, when expressed in terms of the incremental number of ¢’s,

an=te VU .,

g

An acceleration factor An, based on quasi-steady flow and

peak gust velocity is now introduced according to the
definition

a U

A’IL,W-—-:?I- pSV? v

The ratio KAnE is thus found to be

An
Ans—”ozﬂ

Where the gust shape is represented analytically and the
unsteady-lift functions are taken in the form given by equa-
tions (9) and (10), solution of the response equations may be
made by the Laplace transform method, but such a solution
is more laborious than desired. Therefore, a numerical
procedure which permits a rather rapid solution of the
equations has been devised for the case of discrete-gust
encounter and is presented in a subsequent section. It may
be.well to mention, however, that the response equations
are suitable for solution by some of the analog computing
machines,

Bending stresses.—The bending moment and, hence, the
bending stresses that develop in the wing due to the gust
may be found as follows: The right-hand side of equation

368055—56——38
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(1) defines the loading on the wing; suppose that this loading
is denoted by p, then

p= —mb+F

By use of equations (2) and (8) and the notation of equa-
tions (14) and (15), this equation becomes

p=—m &y (zc.”+zl"wx)—apcVUﬁ (2" +2z""w)

[1—¢G—a)lde+2 eV fo "W s—a)do

where, as before, only the first two deflection terms have
been retained. If the moment of this loading is taken about
a given wing station, say y; the following equation for
incremental bending moment at that station will result:

b/2 -
M= " pa—u)dy
]

=22 (4,

a4+ M V=V [ O, 2

M, 16— o))do-+5 VL, | "Wye—ids @0

where the M’s bearing double subscripts are first moments
defined as follows:

b2 bf2
M= f ny—y)dy M= f c—y)dy
f) 1
(21)

b/2 b/2
M, = f moy—y)dy M, = f o (y—y)dy
£ £l

and y, is the station being considered. Dividing equation
(20) by the quantity g pVUM,, gives the following equation

which is considered to define 2 bending-moment factor K at
wing station y;

K=l
5 pVUM
SM.,
~ apold, (z" K Mmo a’ 2f M
[1— ple—a)ldo+ f Y ve—a)do @)

The factor —-pV'UM may be regarded as the maximum

aserodynamic bending moment that would be developed
by the gust under conditions of quasi-steady flow and with
the wing considered rigid and restrained against vertical
motion at the root. The bending-moment factor K; may
thus be seen. to be the ratio of the actual dynamic bending
moment that occurs to this quasi-steady bending moment
and therefore may be regarded as a response or an alleviation
factor.

A more convenient form for the bending-moment factor
may be obtained by solving equations (16) and (17)

simultaneously for the quantities f ) 2" [1—¢(8—o)lde and
0
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f‘ 2"[1—¢(s—o)ldc and substituting these values into
0o 1!

equation (22). With these operations the following equation
results:
i M,

o,
PldGdns

—dz ez’ +hN’z (238)

where
r '—7" b
d= 71 2

1'12'—7'2 Koo

2

[ > m—m (23b)

—1ry

and

L : (24)

8M,,, -
a

m=

‘)

It is seen that, when bending moments are.being determined,
three additional basic parameters (eqs. (24)) appear. The
similarity of 7, and #; to u, and g, is to be noted ; first moments
of masses and areas are involved rather than masses and
areas,

Reduction to rigid case.—It may be of interest to show the
reduction of the response equation to the case of the air-
plane considered as a rigid body. Thus, if z is equated to
zero in equation (16), the following equation for rigid-body
response is obtained:

=2 [ 20 11— gle—oldo [ ve—o)ds (29

If z,” is set equal to zero in equation (22) and use is made
of equation (25), the following equation for the bending-
moment parameter for the rigid-body case is obtained

Ky =(uo—m)z0,” - (26)

where 2" is the nondimensjonal acceleration of the airplaﬁe
considered as a rigid body.

SOLUTION OF RESPONSE EQUATIONS

The case of discrete-gust encounter.—In this section a
rather simple numerical solution of the response equations
(18) and (17) is presented for the case where discrete gusts
are suddenly encountered. The procedure is readily adapted
to either manual or punch-card-machine calculations.
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The derivation proceeds on the basis that the response
due to a given gust is to be determined. The airplane, just
before gust penetration, is considered to be in level flight
and, hence, has the initial conditions that the vertical dis-
placement and vertical velocity are both zero. These con-
ditions mean that 2z, 2, z’, and 2’ are all zero at s=0.
The gust force can be shown to start from zero and, therefore,
the additional initial conditions can be established that 2’/
and z,’/ are also zero at $=0. By the numerical procedure,
solution for the response at successive values of 8 of incre-
ment ¢ will be made and, for the case being considered, it is
found advantageous to solve directly for the accelerations
rather than the displacements. Kl

In order to make the presentation more compact, the
following notation is introduced:

r’

ax=2p
B=z" (278)
0=1—¢
and
6= G vle—o)do (27h)

~'With this notation, equation (16) would appear simply as

toar=—2 fo (a+18)0(s—0) do-1(5) (28)

In accordance with numerical-evaluation procedures,’ the
interval between 0 and ¢ is divided into m equal stations of
interval eso that s=me. The product of (e-+8) and 6(s—o)
is assumed formed at each station and, with the use of the

. trapezoidal method for determining areas, the unsteady-lift

integral in equation (28) may be written in terms of values
of « and B at successive stations as follows, where the mth
station corresponds to the value s:

J;'(a+r1ﬁ)0(8—a)da=e (Bn—1051+0 20t . .o Fbamert

%eodm +em <9in—1ﬂx+9n-2ﬁx+ NP +0le-l+% 005::1) (29)
in which 6o, 8;, . . . are, respectively, the values of the
1—¢ function at 8=0, s=¢, . . . (a and B, do not appear
because of the initial conditions). With this equation,
equation (28) may be written at various values of & or at
successive values of m; the result, for example, for m=1 is

oo = —efgoy— ery oy +f1
and for m=2,

poca==— (200t -+ pcrs) — er1 (26,8, +0062) ‘|_'f 2

where f; and f; are the values of the gust-force integral at
s=e and s=2e.
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The equations thus formed may be combined in the following matrix equation:

[ 1o~ 0g€ e [ 7100€ 7l 8 h

20,¢ Hot-0qe o3 2ri6ie 70 ; Ba T

20,¢ 20,¢ Kot 0,e o 2710s¢ 2716, 7100€ Bs Is
+ . . . =] (308)

| 2016 200 . . . pgt-Ope _J s __27‘10,,“_16 270, _ce . . . Tifhe_||Bm I

which may be abbreviated
[A]|e|+[Bl|8|=]f| (30b)

The simplicity of the matrices 4 and B, and all square matrices to follow, is to be noted; the matrices are triangular and
all elements in one column are merely the elements in the previous column moved down one row. Thus, only the elements
in the first columns have to be known to define completely the matrices.

Now instead of considering directly the second response equation, equation (17), it is expedient to consider equation
(19). According to the derivation presented in appendix A, the value of 2z at s=me may be approximated in terms of the
past-history value of 2’/ by the following equation:

ag=¢| =18+ . . . +2Bastbartiba (31)

where By, B2, . . . are the values of z’’ at s=¢, 8=2¢, . . . . If this equation is used to replace z in equation
(19) and the unsteady-lift integral is manipulated similarly to the integral in equation (28), equations are obtained for suc-
cessive values of m which involve only the unknowns e and 8. Theresults may be combined in the following matrix equation:

[ A2 ] ’
7’"_: (1+ —66—1>+(:_:—“> oe B ar
Biyeaig (ﬂ—rl> he B <l+&-2>+<§—r1) o ' B @
71 ry 71 6 1 2
K g2 ra_ By ra_ L‘l( V_f’) (ﬁ_ )
2 7'1 A 62+2 (7'1 I‘l) 026 " A 62+2 (7'1 7'1) 016 = 1+ 6 + ™ Ty 006 ) ﬂa o [4 2
et oM oz of T2 m b"ﬁ’)(ﬁ_)
_(m l)rl)\ 62+2<7'1 r1>0,,,_1e (m 2);)\ 62+2<T1 7‘1)0,_26 7'1 <1+ 3 + " ™ 006_J Bn [
(32a)

which may be written

[C]18l= ol (32b)

The square matrix [(] is seen to be similar to the other square matrices in that it is triangular with all the elements in
one column made up of the elements in the previous column moved down one row.
An equation in |8 alone is obtained by substituting |«| from this equation into equation (30) to yield

{2 LI+ el = Dllgl=1 ] - 3

which is the basic response equation relating 8 (that is, z’/) to the gust force. This equation represents a system of
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linear simultaneous equations where the order of the matrix
is arbitrary; that is, the equations may be written up to any
desired value of s=me. The solution for response can there-
fore be carried on as far as desired. Fortunately, the equa-
tions are of such a nature that simultaneous solution is not
required. As mentioned, each of the matrices [A4], [B], and
[ is triangular with all elements 0 above the main diagonal
and with all elements on the main diagonal of each matrix
equal; therefore, the main diagonal elements of [D] will also
all have the same value and the elements above this diagonal
will be 0. If each element on the mein diagonal of [D] is
denoted by d; and [D] is the matrix [D] with the main diagonal
elements replaced by 0’s, then

[Dl=d:[I]+[Di]
With this equation, equation (33) may be written

lBl=Z; fI—7 Dille] 9
Expanded, this equation has the form
ﬁl fl 0 7] Bl
Ba Ja & 0 B2
Bs Ja d dy 0 Bs
B. =dll fs —31—1 di dy dy O B4 35)

Bs Ts di dy dy d» O Bs

. - o

It can be seen that a step-by-step solution for the successive
values of f may now be made; that is, g, is solved for first,
then, with B, established, B; is solved for, and so on, as far as
is desired. With the value of |8] thus established, solution
for |a| may now be made directly from equations (32).
Values of the displacements 2, and z; may be obtained directly
from a and B; z may be obtained from equation (31); and
2 may be obtained from this same equation with g8 replaced
by c.

Some mention should be made with regard to the selection
of the interval e A rough guide to use in selecting e can be
obtained by considering A, which appears as the characteristic
frequency in most response calculations. The period based

on this frequency would be T,=%i£- Experience has shown

that an interval in the neighborhood of 1/12 of this period
yields very good results (in general less than 1 percent error);
accordingly, & reasonable guide in choosing ¢ would be the

equation es=— 2)\ " Some convenient value near that given by

this equation should be satisfactory; in general, it will be
found that ¢ may be 1 or greater.

The procedure thus outlined provides a rather rapid eval-
uation of the response due to a prescribed gust. With the
response thus evaluated, the bending moment at any value
of s or the complete time history of bending moment, may be
found by application of equations (23).

* (30) and (32).
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As a convenience in making calculations, & summary o
the procedure developed in this section has been made and
is given in appendix B. Curves of the value of the gust
force, equation (27b), are also given for three different types
of discrete gusts: sine gusts, sine® gusts, and triangular
gusts.

As a final Word, it should be evident that, if response
values for either z,’’ or 2’/ are known, the gust causing this

response can be found b smta.ble manipulation of equations
Thus, if 2/’ is known, 8 in equations (30b)

and (32b) may be ehmmated to give the equation

{{4]+w[BI[C] Ha|=]|f|

Direct substitution of z// in this equation allows |f| to be
determined. In most practical cases the second term in
equation (30b) contributes only a small amount and may be
dropped with little resulting error in the gust force. The
equation for |f] is then simply

(4] |a]=]f]

The case of continuous-sinusoidal-gust encounter.—Of
primary importance in making continuous-turbulence studies
is the response of the aircraft to a continuous sinusoidal gust.
A reduction of the response equations to this case is therefore
now made.

Where the gust is sinusoidal with frequency o, the quan-
tities u, 2y, and z; may all be taken proportional to ¢*, where

Ic=% and it may be shown that equations (16) and (19)
reduce to (eq. (19) is chosen in place of eq. (17) purely for

convenience)

yozo”=——2(zo’+rlzl')(F—|-'iG)+-% (P+iQ) (36)

Byt (Bon) @m0

where F(k) and G(k) are the in-phase and out-of-phase oscil-
latory lift coefficients used in flutter work and P (k) and Q%)
are the similar in-phase and out-of-phase lift components on
a rigid wing subjected to a sinusoidal gust (see, for example,
ref. 17).

Now let the gust velocity and the motlon be represented
by the real parts of

y=Ue*
2y=2Ze™ (38)
21 =Z18a'

where Z, and Z, may be complex. With these equations,
equations (36) and (37) become

B <——M—%i % ZotH? (—r, 26 ¢ in % Zy=P+iQ
' (39)

et [ () (gor) s (or) e

(40)
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These equations yield

(R4+'LS4)(P+'LQ)
Y “n

Ry(P4-1Q)
T= iy

(42)

where

~
R1=—#0_%1

R2=—7'1 glzq

Rs‘—"#o

R4—-

) G

g (43)

A1=R1R4—Sls4—R2R3

A2=R184+R4S1 —R:;Sz 7

in which R; has been included because it appears later.
With Z, and Z, established, the various response quantities
of interest may be determined. Those used frequently are.
(1) the rigid-body component of acceleration z//, (2) the
acceleration at the fuselage center line

2 (0)=2""+z""w(0)=2" —8z"

where & is the absolute value of the fundamental-mode
deflection at the fuselage in terms of a unit tip amplitude, and
(3) the bending-moment factor K,=dz/ +ez’' +hNz, see
equation (23a). In accordance with equations (38), these
quantities may be written as the real parts-of

2y = — 2 Z ™
21O =—I2(Zo—3Zy) €™

e[t (s}) ]

With the use of equations (41) and (42), these equations
become

(44)

st BHSYPHIQ s, N
A28,
K= d(R5+’LS4)(P+zQ) e
= Art-14, J

The squares of the amplitudes follow directly from these
equations and are listed below since they play a primary role
in many applications

l 20,,Ia._(1?¢4’+8’4")0”+Q")

APtAZ (46)
|27 ()= [(R4+5R3)’;"l_l‘_ i’:’] ('S @7
e p TR SIE ) )

It is worthwhile at this point to mention that a good approx-
imation exists for the quantity P?--(@® which appears in all
three equations. This quantity reflects the force on the
airplane due directly to the sinusoidal gust and for two-
dimensional incompressible flow is approximated with good
accuracy by the expression (see ref. 8)

Prpg=—L_ (49)

1—l—2 I

Two other quantities which are used frequently in appli-
cations are now presented. These two quantities are the
acceleration and bending-moment factor that apply when
the airplane is considered as a rigid body, that is, when it is
considered to have only the degree of freedom of vertical
motion. The equation for rigid-body response can be
obtained directly from equation (39) by setting Z,=0.
With the aid of the resulting equation it may be shown that
the square of the amplitude of the rigid-body acceleration is

P2+Q2
. 2 2 2
(w+5) +(%)
Through use of equation (26), the rigid-body bending-
moment factor may be written

B 3, [*= (o— m)*| Zo,” [ (51)

As a closing remark to this section, it may be said that the
computation of the response to & continuous sinusoidal gust
is actually quite an easy task, the amount of work involved
being very small in comparison with that involved in a
discrete-gust calculation. All that is necessary is to evaluate
the response quantity of interest, equations (46) to (48),
through means of the coefficients given by equations (43),
with % taken equal to the reduced frequency of the sinusoidal
gust under consideration. Because the computation is so
straightforward, no summary is given as in appendix B for
the case of discrete-gust encounter.

l ZOrII |2

(50)

EXAMPLE

In order to provide an illustration and give an idea of the
accuracy of the present analysis, the response to a sharp-
edge gust of the two-engine-airplane example considered in
reference 16 was determined. The weight distribution over
the semispan, the wing-chord distribution, and the funda-
mental bending mode are shown in figures 2, 3, and 4. The
frequency and deflection of the fundamental mode were
calculated by the method given in reference 18. The solu-
tion is made for a forward velocity of 210 mph and a gust
velocity of 10 ft/sec.
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The lift-curve slope used in reference 16 was 5.41; to be
consistent, the same value was used herein. Furthermore,
the unsteady-lift function used for & change in angle of attack
in the example presented in reference 16 was given by the
equation

(1—"(#)4_3:1_0.3616—0'33“

rather than by equation (9). Thus, this equation was also
used herein. The gust unsteady-lift function used was that
given by equation (10).

The various physical constants and the basic response and
bending-moment parameters are given in table 1; the values

|

M

Engine
Fuseloge  [4960
10,140 1b Ib

!——&——;mctuml weight 2,380 Ib -

= 3 ]
&

F1eurE 2.—Semispan weight distribution for the two-engine airplane
of example.
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Fieurs 3.—Wing chord distribution for airplane of example.
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Fiaure 4.—First-symmetrical-bending-mode deflection curve of
example airplane. oy=20.9 radians/sec.
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of the unsteady-lift function and the values of the gust force
are listed in table 2. The matrices [4], [B], and [C] used

in the solution are given in table 3.

The solution for response is shown in figure 5 (a) where the
deflection coefficients @y and a; in inches are plotted against
distance traveled in half-chords. The corresponding deflec-
tion. quantities for the example given in reference 16 were
determined and, for comparison, are also shown in the figure.
A similar comparison is made in figure 5 (b) for bending
stresses at the fuselage and engine stations, stations 0 and 1
from reference 16. The agreement is seen to be good.

TABLE 1.—PHYSICAL CHARACTERISTICS OF AIRPLANE
USED IN EXAMPLE

, b 37,450
S, sq ft 870
b, in.. 1120
eo, Im . 184
2, 81 ft. 0. 00238
YV, ft/sec. 308
U, 1tf 10

80, - 0.0208

half-chords 5}.42
o 64,16
By 0. 0048
A 0. 4363
n 0. 2181
1 .. 0.1358
n_[' station aeee 0,452

station 0, 847
fo. .ts“l:gtion._. . %%9

englne on . 19

fuselage station. 3.605
i engins station - 3,391

z fnselage station. .. 0, 00637
7”“—“{angma station 0. 00650

*z here denotes distance from neutral axis to extreme fiber.

TABLE 2.— 1—¢ ORDINATES AND GUST-FORCE ORDINATES
FOR SHARP-EDGE GUST, e=1.0

m Omor (1—¢)u-s | fory
0 0.6390 0

1 L7834 377
2 . 8316 547
3 . 8849 .635
4 L9314 602
b . 9463 .738
] . 0633 W77
7 9749 .768
8 . 9820 .82t
9 . 9883 8456

TABLE 3—MATRICES USED IN EXAMPLE

A Matrix .
—64. 700 - -
15068 64.790
16830 15068 64.799
17688 16630 15068 64.799
1.8428 17608 1.6630 15068 64.700
18926 18498 17668 L6630 1.5068 64.799
10266 1.8026 18428 17668 16630 L5068 64.709
L9488 1,926 1.8920 1.8428 1.76898 1.6630 15068 64.799
10858 L0468 1.6268 18028 1.8428 L7698 1.6630 15068 64.700
| 139 Looes Loes 126e 18o26 L8428 17608 16630 1.5008 04,790
B Matrix
— 0.1804 -
.3288  0.13%4
13627 .3286  0.1394
3860 .3627 .3286  0.13%4
S4019 3880  .3627 .32%8  0.1304
4128 4019  .3860 .3627 .3288 0.1304
A2 4128 4019 3860 .8637 .3280 0.13%4
422 (403 4128 4010  .3880 .3627 .3286 O0.13%4
4287 .do52 L4203 L4198 .4019  .$860 .3027 3280 0.1304
| 4311 4287 4253 4202 .4128  .4010  .3860 .30%7  .3288  O0,1304.]
C Matrix
~ 4, 5367 -
13054 45367
22445 13954 4.5367
30735 22445 13054 45367
2.8330 20785 22446 L3054 45367
16049 38580 3.0735 22445 13054 45367
54047 46940 3.8889 30735 22445 13054 4.5367
5.2000 b5.4547 46040 38589 3.0735 2245 13854 4.5367
7.0824 G.2000 54047 46949 38889 3.0735 22446 18064 4.0307
| 7.8798 7.0824 6.2000 5.4547 4.6040 3.8880 3.0736 22456 1.3054 45307
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Present analysis
————— Reference 16
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(a) Displacements.
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Fraure 5.—Response of example airplane to a 10-ft/sec sharp-edge gust. V=210 mph.
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REMAREKS ON ANALYSIS

Although the unsteady-lift functions for two-dimensional
unsteady flow are presented, the method is general enough
s0 that the unsteady-lift functions for finite aspect ratio, for
subsonic compressible flow, and for supersonic flow may be
used as well. (See refs. 3 and 17 to 22.)

Since the numerical method for the case of discrete-gust
encounter is based on an infegration procedure, it possesses
the desirable feature that a fairly large time interval may
be used and good accuracy still be obtained. As an accuracy
test, solutions of equations (16) and (17) were made for
several cases by the exact Laplace transform method as
well as by the numerical process, in which process the time
interval was selected according to the rule of thumb sug-
gested. When the results were plotted to three figures,
the difference between the two solutions was barely
discernible.

Additional bending modes could be included in the
analysis but this refinement is really not warranted. Some
calculations made with additional modes gave results which
differed only slightly from, the results obtained when only
the fundamental mode was used. The good agreement of
results obtained for the example with the results obtained
by the more precise method given in reference 16 also
illustrates this point. Furthermore, if additional degrees
of freedom are to be used, it would appear more important
to extend the analysis to include wing torsion and airplane
pitch and, also, to include the case of nonuniform spanwise
gusts. Torsion undoubtedly becomes important for speeds
near the flutter speed, and pitch would appear important
for cases where low damping in pitch is present. This latter
point has been borne out by some investigations which show
that there is a marked increase in gust loads as the damping
in pitch is decreased. However, it is the intent of this

analysis to treat the effects of wing bending flexibility and .

it should be sufficiently satisfactory for speeds at least up
to the cruising speeds and for airplanes having good longi-
tudinal damping characteristics.

TREATMENT OF RANDOM CONTINUOUS TURBULENCE

The approach given in the previous section works well
for gusts which are either isolated or which are of a con-
tinuous-sinusoidal type. It also works for gusts which are
of a random-continuous nature, such as exist in the atmos-
phere. For this case, however, the approach is not very
practical, first because it is questionable whether an appro-
priate or representative time history of atmospheric gust
sequence could be established, and second because for any
long gust sequence the amount of computational work
involved is prohibitively large. It is therefore desirable to
turn to other means for treating realistic turbulence condi-
tions, with the view of having a technique that has general
applicability and is mathematically tractable.

One such procedure which suggests itself for treating the
case of random continuous turbulence and which is at present
receiving much attention makes use of the concepts and
techniques of generalized harmonic analysis (see, for example,
refs. 6 to 10). These methods permit the description of the
random-atmospheric-turbulence disturbance and the associ-
ated airplane response in analytic form by means of the
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so-called ‘“‘power-spectral-density function.” A brief review
of the technique is considered pertinent. If «(f) represents .
a random disturbance or & system response quantity to this
disturbance (such as the atmospheric vertical velocity and
resulting structural response considered herein), then the
power-spectral-density function ®(w) is defined as
. .

f ,u(t)e—iuldt

-7

Bw)=lim 51, ’

T 27TT (52)

where o is frequency in radians per second, and the bars
T

designate the modulus of the complex quantity f u{fe~t+dt,
-7

which is known as the Fourier transform of u(f). An
equivalent and more useful expression for ®(w) can be
derived and is ’

@(w)=§_ me(T) cos wr dr (63)
o
where B(7) is the autocorrelation function defined by
. 1 T
Bo)=lim g [ w@ui-+e) d (54)
A useful property of ®(w) is that
J; ) $(w) do=Meansquare=1w*@)=R(0)=¢*  (55)

The quentity 42(?), or ¢%, the time mean square, provides
a measure of the disturbance energy per unit time and has
thus been characteristically termed the power, as a carryover
from its early application in the fields of communications
and turbulence, where it often had the dimensions of power.
Thus, #(w) bas, in turn, been termed the energy or
power spectrum. In this form, the element ®(w) dw gives
the contribution to the mean square of harmonic components
of u(?) having frequencies between » and w-+tdw.

Now a particularly useful and simple relation exists for
linear systems between the spectrum of a disturbance and
the spectrum of the system response to the disturbance (see
refs. 8 and 23). 'This relation is

Po () =%:(w) T'*(w) (66)
where
&, (w) output spectrum
&, (w) input spectrum
T(w) amplitude of admittance frequency-response func-

tion which is defined as the system response to
sinusoidal disturbances of various frequencies

It is precisely because of this equation that the response
to a continuous sinusoidal gust was derived in the previous
section. The equation indicates that the response abt a
given frequency depends only on the input and the system
admittance at that frequency, which is plausible for linear
systems.

A significant point to note here is that, despite the {fact that
continuous random disturbances are under consideration, the
response equation (56) turns out to be surprisingly simple
and easy to apply. This fortunate outcome is undoubtedly
one of the consequences of working in the frequency plane
rather than the time plane. Nevertheless, even though tho
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frequency plane is involved, it is still possible in particular
cases to determine & number of statistical characteristics of
the disturbance or response time histories which are of
interest. For example, the root-mean-square value o, which
may be obtained directly from the spectrum in accordance
with equation (55), provides a useful linear measure of the
disturbance or response intensity. Further, in the particular
case in which the function «(f) has a normal or Gaussian
probability distribution with zero mean, the probability
density is given by

p)= j—e-"’/*v’ (57)

27

Algo, S. O. Rice, in reference 24, has derived for the case in
which the disturbance function is completely Gaussian a
number of relations which appear useful in aeronautical
applications and which are particularly significant for fatigue
studies. One of the more important expressions is for the
average number of peak values (maximums) per second that
are above a given value of u. For the larger values of u
(say u>20), the expression is

Np(u)=%ail ozt (584)

L[ m0a]

There is some indication, as described in reference 6, that
airplane gust loads may tend to have a normal distribution.
Hence, use is made of these equations subsequently in the
application to the flexibility studies.

As a schematic illustration of the application of equation
(56) to the problem of airplane response to gusts, figure 6 has
been prepared. The top sketch in this figure is the input
spectrum and, in this case, represents the spectrum of at-
mospheric vertical velocity. The frequency argument 2,
which is 27 divided by the wave length L, is introduced in
place of w because gust disturbances are essentially space

where
(58b)

INPUT: characterizes the
aotmosphere
8
o A;, mean—square value of -
4 qust velocity
Bending”” FREQUENGY RESPONSE:
g charocterizes the
& - airplane
~ .
‘Free body
N
> QUTPUT: charocterizes
.g.‘ the response
g A4,, mean-square volue of
ey 40 response
.2z
-/—\v-

b—z

Fiaure 6.—Gust-response determination.
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disturbances rather than disturbances in time. The second
sketch 7(Q) represents the amplitude squared of a specified
airplane response, such as the airplane normal acceleration
(eq. (46)) to sinusoidal gusts of unit amplitude and of fre-
quency . <Note that o, k, and Q are related as follows:
2V
¢o
of the airplane, the various modes usually showing up as
peaks such as the free-body and fundamental wing-bending
modes illustrated. The output spectrum &,(Q) is obtained
in accordance with equation (56) (this equation applies
whether the argument is » or ) as the product of the first
two curves and gives, for example, the spectrum of normal
acceleration or the spectrum of stress, depending upon what
quantity is chosen for the frequency-response function. Tbis
output spectrum indicates the extent to which various fre-
quency components are present in the response, and, further,
it allows for the determination of various statistical proper-
ties of the response time history, such as are given by equa-
tions (55), (67), and (58).

CORRELATION OF CALCULATION AND FLIGHT STUDIES

A number of flight and analytical studies have been made
which deal with the effect of wing flexibility on the structural
response of an airplane in flight through rough air (see refs.
10 to 12 and 25 to 28). The primary results of these studies
are summarizéd in this section. Specifically, the following
material is covered. The significant results of flight tests
are given. Studies made on the basis of single- or discrete-
gust encounter are then reviewed and the extent of the
correlation with flight-test results is indicated. Finally,
some analytical work on the more realistic condition of
continuous-turbulence encounter is presented and corre-
lation with flight tests shown.

FLEXIBILITY MEASURES

From an analytical point of view, several measures may
be devised to indicate the extent to which flexibility effects
are present in any airplane. Generally these measures
indicate how a particular structural-response quantity (such
as acceleration) for the flexible airplane compares with what
this response would be if the aircraft behaved as a rigid body,
a comparison of 2’/ with z,,//, for example. For the correla-
tion purposes of the present report, however, the flexibility
measures have been confined largely to the two types used
in flight tests. One of these measures involves a comparison.
of the peak incremental accelerations developed at the fuse-
lage with the peak incremental accelerations at the nodal
points of the fundamental mode (see fig. 7), the latter accel-
eration being considered a close approximation to what the
acceleration would be if the airplane were rigid. These two
accelerations are of particular interest because both have

w=VQ= > This function introduces the characteristics

- been considered in the deductions of gust intensities from

A ﬂF
Any,

A~
7
‘v ] N "N
- N 3 ~
~

—_——

F1gure 7.—Fuselage and nodal accelerations.
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measured accelerations; they are different, in general, as are
all accelerations along the wing, because of structural flexi-
bility, particularly wing bendmg The other flexibility
measure involves a comparison of the actual incremental
wing stresses with what these stresses would be if the
airplane were rigid. Since it is, of course, not possible to
obtain the rigid-body reference strains in flight, some near-
equivalent strain must be used. The genersal practice has been
to assume that the rigid-body strains are equal to the strains
that would develop during pull-ups having accelerations
equal to the accelerations that are measured at the nodal
points during the rough-air flights, and this practice has been
followed herein.
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FLIGHT STUDIES

In order to esteblish what the numerical values of these
flexibility measures are in practical cases, flight tests were
made in clear rough air with the three airplanes shown in
figure 8 and designated A, B, and C as shown. References
25 to 28 report some of these flight tests., These airplanes
were chosen because they were available and because they
were judged to be fairly represemtative of rather stiff,
moderately flexible, and rather flexible airplanes, respectwely
In this ﬂembfhty companson the factors which are considered
to signify an increase in flexibility effects are higher operating
speeds, lower natural frequencies, and greater mass in the
outboard wing sections. Figure 9 shows the type of accelera-

(a) Airplane A, (b) Airplane B, (¢) Airplane C.
Fiaure 8.—Three-view sketches of test airplanes.
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Fiaore 9.—Acceleration measured in clear rough air.
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tion results obtained from these flights, The ordinate refers
to peak incremental acceleration at the fuselage and the
abscissa refers to the peak incremental acceleration at the
nodal points. Although only positive accelerations are shown
in this illustration, a similar picture was obtained for nega-
tive acceleration values. The solid line indicates a 1 to 1
corregpondence; whereas the dashed line is a mean line
through the flight points. The slope of this line is the ampli-
fication which results from flexibility; thus, the fuselage
accelerations are 5 percent greater on the average than the
nodsal accelerations for airplane A, 20 percent greater for
airplane B, and 28 percent greater for airplane C. It is to
be remarked that the picture is not changed much if given
in terms of strains; that is, if the incremental root strains
for the flexible case are plotted against the strains that would
be obteined if the airplane were rigid, similar amplification
factors are found.

DISCRETE-GUST STUDIES

In an attempt to see whether these amplification factors
could be predicted by discrete-gust studies, some calculations
were made by considering the airplane to fly through single
sine gusts of various lengths. The calculations were made
by the discrete-gust analysis presented previously. The con-
ditions used for speed, load distribution (payload and fuel),
and total weight were similar to those used in the flight tests.
Some of the significant results obtained are shown in figure
10 (see ref. 12 for additional related results). The ordinate
is the ratio of the incremental root strain for the flexible
airplane to the incremental root strain that is obtained for
the airplane consideredrigid. The abscissa is the gust-gradi-
ent distance in chords, as shown in the sketch. The curves
indicate 2 significant increase in the amplification or response
ratio in going from airplane A to B to C. It may be
remarked that the amount of amplification is, in fact,
related to the aerodynamic damping associated with wing-
bending oscillations. This damping depends largely on the
mass distribution of the airplane and is lower for higher out-
board mass loadings. The curves thus reflect the succes-
sively higher outboard mass loadings of airplane B and
airplane C.

Airplone

1 | {
(o} 2 4 6 8 - 10
H, chords

Figure 10.—8train amplification for single-gust encounter.
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The important point to note about this figure is that the
general level of each curve is in good qualitative agreement
with the amplification values found in flight. Thus, the
1.05 value for airplane A roughly represents the average of
the lower curve, the 1.20 value for airplane B the average
of the middle curve, and the 1.28 value for airplane C the
average of the upper curve. A more direct quantitative
comparison would be available if a weighted average of the
calculated curves could be derived by taking into account
the manner in which the gust-gradient distances are dis-
tributed in the atmosphers. No sound method is available
for doing this, however, and this overall qualitative compar-
ison will therefore have to suffice.

Figure 11 shows what is obtained when calculation and
flight results are correlated in more detail. In this figure,
the strain ratio is plotted against the interval of time for
nodal acceleration to go from the 1 g level to a peak value,
This interval, when expressed in chord lengths, is slightly
different from the gust-gradient distance. The flight values
shown were obtained by selecting from the continuous
acceleration fecords a number of the more predominant
humps that resembled half sine waves and then treating
these humps as though they had been caused by isolated
gusts. The agreement seen between the calculated results
and the flight results is actually surprisingly good when the
complexity of the problem and the fact that the calculations
are for a highly simplified version of the actual situation are
considered. In contrast to the well-behaved single gusts
assumed in the calculations, the gusts encountered in flight
are not isolated but are repeated and are highly irregular in
shape. These factors may well account for the higher ampli-
fications found 'in flight, especially in the range of higher
values of time to peak acceleration; in this range it is to be
expected that the amplification effects associated with the
higher frequency components of the irregular gust shapes
are superposed on the amplification effects of the predomi-

nant gust length to lead to the higher effective values
observed.
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Time to peak boceleroﬁon, sec.
Fieurse 11.—Rough-air strain amplification for airplane C.
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From the results thus far presented, it may be concluded
that a reasonably fair picture of flexibility effects may be
obtained with the discrete-gust approach. It is found to
give good overall qualitative agreement with flight-test
results and can be used to determine how one airplane com-
pares with another in respect to the relative extent to which
these effects are present. Detailed quantitative correlation
is not feasible, however, since the degree of resolution per-
mitted by the approach is limited. This is, of course, to be
expected in view of the limited and unrealistic description
of turbulence used.

CONTINUOUS-TURBULENCE STUDIES
The procedure given in the section entitled *“ Treatment of
Random Continuous Turbulence’” was- applied in order to
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quite clearly the different bias that each airplane bas toward
various frequency components of the atmosphere. The first
hump is associated with vertical translation of the airplane
and the second hump, with wing bending. The spectra for
bending-stress response, obtsined by multiplying the
frequency-response curves by the input spectrum, of course
show that the curve for the flexible case overshoots the curve
for the rigid case by an amount consistent with the frequency-
response curves. This overshoot is a reflection in the
frequency plane of the characteristics of the transient-
response curves shown in figure 10. The area of the over-
shoot is & direct measure of the amplification in mean-square
bending stress that results from wing flexibility.

TABLE 4—AIRPLANE LOADING, PHYSICAL CONSTANTS, ‘
AND BASIC PARAMETERS

see what it would yield in the way of flexibility effects for :
the three airplanes used in the rough-air flight tests. The Airplane A | Afrplane B | Alrplano O
spectrum chosen for atmospheric vertical velocity was that
. . . . F age load Crew onl fall Crew onl
given in reference 6. Bending stress at a station near the Fuelload .. % fu fall fu
. . W,1b 24,000 | 33,470 106, 500
root of the wing was chosen as the response variable, and Y. mph 185 28 2
evaluation was made for flight conditions representative of g,'t?ﬁ ' 1,140 1120 1&7@
those used in the flight tests. These conditions are indicated 3','1::. i 14 28
in table 4, together with the physical constants and basie o, slugsfou ft._ 0.00238 0233 og?g
parameters that apply. (It is remarked that the use of the Pl Q% Jag 583
theoretical lift-curve-slope value of 2x in place of more rep- ) o.720 0.302 %'%
. - - . 5 S g
resentative values has no serious consequence herein since n 0.0%0 0.143 0.131
the final results to be presented are in ‘a ratio form. which is 17106 SHALOD, 0. 02 N ol
relatively insensitive to the lift-curve slope used.) Figure 12 ™ 08 1594 30.88
shows the transfer functions that were obtained by means of a Ug 4.418 tlx'gﬁ
equations (48) and (51); for this evaluation the flutter co- b 0.781 152 - 273
efficients for two-dimensional incompressible flow and an o ’ L =
amplitude of the sinusoidal input gust of 1 {t/sec were used. "_;,‘“" 0.00468 | 0.00543 0.000012
The solid curve is for the flexible airplane and the dashed
curve, for the airplane considered rigid. These curves show JAlL values listed balow the wing statlons apply to the station indlcated.
60 x 104 T [
40} = B
o
g
& _~Flexible
20 N s -
\
\\
~—— ~—
Rigid--="
\\
. . . L) LB . LTS e,
o I 1 o) : ’ 1
Frequency, Frequency, Q
Station, in 60
(a) Airplane A. (b) Airplane B. (¢) Airplane C.

Freure 12.—Transfer functions.
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In order to obtain an amplification or flexibility measure
more directly comparable to the values obtained from the
flight-test results, the following procedure was used. Equa-
tions (58) were used to give curves of the type shown in

sketch 1 where the ordinate N, refers to the number of -

..~ Flexible

- Stress S ’
SkeTcn 1.

stress peaks that occur per second above a given stress level
represented by the abscissa. As can be seen, one curve
applies to the flexible airplane, whereas the other is for the
airplane considered rigid. A convenient measure of the
magnitude of flexibility effects can be found by taking the
ratio of the stress for the flexible case to the stress for the
rigid case at a given value of N, (for example, the ratio of
the stress at point 1 to the stress at point 2). In general,
this ratio varies with stress level; it is highest at the lower
stresses and with increasing stress decreases to a constant
value equal to the ratio of the root-mean-square stress for
the flexible airplane to the root-mean-square stress for the
rigid airplane. For correlation with flight results, this ratio
was determined for each of the three airplanes. The stress
level chosen was in the range of the higher flight-stress values;
specifically, it was teken equal to twice the mean-square
stress that developed. .

Figure 13 shows a correlation of some of the results ob-
tained by the harmonic-analysis approach with flight results.
The ordinate is the previously used strain ratio, that is, the
ratio of the peak incremental root bending strain for the
flexible airplane to the peak incremental root bending strain
for the aircraft considered rigid. The abscissa is the ratio
obtained from the harmonic-analysis theory, as explained in
the preceding paragraph. The three circles are the results
for the three airplanes. As a matter of added interest, a
single acceleration point, which was the only one computed
and which applied to airplane B, has been inserted in the
plot as though the coordinates involved the ratio of fuselage
to nodal acceleration. The good correlation shown by this
plot is, to say the least, very gratifying; it shows that good
correlation may be obtained between calculations and flight
results and, moreover, indicates that the harmonic-analysis
approach is a suitable method to use.

6587

13k Airplane G
1.2} Airplane B o
i

| (Acceleration)

LI
(Acf)
A¢r oxp Airplone’A o
1.0
9
.1 I 1 1 ] 1

(0] 9 1.0 1.1 12 1.3

(2}
Af’ oo
F1aure 13.—Strain amplification for continuous turbulence.

CONCLUDING REMARKS

The derivation presented herein is mtended to provide a
convenient erigineering method for taking into account wing
bending flexibility in calculating the response of an airplane
to either discrete or contintous-sinusoidal gusts. The
method is believed to be well suited for miaking trend studies
which evaluate, for example, the effect on response of such
factors as mass distribution, speed, and altitude. It is not
intended to apply for speeds near the flutter speed or for
airplanes which have poor longitudinal damping characteris-
tics; for these cases an extension to include wing torsion and
airplane pitch would be desirable.

As regards the calculations and flight studies that were
made for three airplanes to determine the manner in which

"gust loads are magnified by wing flexibility, the following

remarks may be made. These studies indicate that an ap-
proach based upon single-gust encounter can be used to
evaluate the way in which one airplane compares with
another in respect to the average of these flexibility effects.
This discrete-gust approach also shows overall qualitative
correlation. with flight results; however, it does not permit
detailed resolution of the flexibility effects, and hence direct
quantitative correlation is not feasible. A more appropriate
approach appears to be one which considers the continuous
random nature of atmospheric turbulence and which is based
on generalized harmonic analysis. Not only does it permit
airplanes to be compared with one another in detail but it
also provides good quantitative correlation with flight
results. It therefore appears that, through wuse of this
continuous-turbulence approach, a suitable means is afforded
for determining the magnitudes of flexibility effects. More-
over, many useful ramifications, such as application to fatigue
studies, are provided as well.

LANGLEY AERONAUTICAL LLABORATORY,
NarioNaL ApvigorRY COMMITTEE FOR AERONATUTICS,
Lanerey Fiewp. Va., March 4, 1964.
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APPENDIX A
DERIVATION OF EQUATION RELATING DISPLACEMENT TO PREVIOUS SUCCESSIVE VALUES OF ACCELERATION

In this appendix, & derivation is given of equation (31)
which gives the value of displacement in terms of successive
past-history values of acceleration. Suppose that the sec-

ond derivative (acceleration) of a function is approximated

by a succession of straight-line segments as shown in sketch 2

SkETCH 2.

where the segments cover equal intervals e of the abscissa &
and the initial condition that z//=0 is assumed to apply.
If a dummy origin is now considered at the station m —1,
the segment between stations m —1 and m may be repre-
sented by the equation

g m_l.*_#:_ s

Two successive integrations give the relations for z’,, and
Zm 88 follows:

2=

~znm__ Im_
2"m—-18+—‘§fl—1 &2 n

z=2z"p_ 82+z—““$‘1 842 181 2m1

where the constants of integration z',.; and z,_; (initial
conditions for the interval) have been introduced. If s is
set equal to ¢ in these two equations, the following equations
result:

Z’m=§ (Z",,.,-l— znm—l)_l_z,"‘-l (Al)

&
=-€ Z",,+%2 2"m—l+zlu—le+zm—l
588

(A2)

From these two equations the values of 2/, and 2z, at any
time interval may be given in terms of the second derivative
at all previous time intervals, For example, with initial
conditions of z//;=2'y=0, equation (A1) becomes for m=1

le=% 2“1 (A3)

and for m=2
z,=§ ("5 +2")+ 2"

Combining this equation and equation (A3) results in the
relation
Z3=c¢ (Z"1+% Z"z)

This process may be carried through for each of the time
stations to yield the following general equation for 2,,:
same (it et A kg ) (A
which, of course, is the trapezoidal approximation of the
ares under the z'/-curve. Equation (A2) for 2z, may be

treated similarly, and it is found that the general equation
for z,, may be written

z..=e’[(m——1)z”1—|—(m—2)z"g+ o A2 k2 i z”,,,]
(Ab)

This equation thus gives the displacement at any time sta-
tion in terms of the accelerations at all previous time
stations.

It may be noted that, if higher-order segments (parabolic
or cubic) had been used instead of straight-line segments to
approximate the second derivative, equations similar in
form to equations (A4) and (A5) would also result. For
most practical purposes, however, the accuracy of equation
(A5) is sufficiently good as long as the interval e is chosen so
that the straight-line segments roughly approximate the
second derivative.



APPENDIX B

SUMMARY OF CALCULATION PROCEDURE FOR DETERMINING THE RESPONSE TO DISCRETE GUSTS

As a convenience, a summary of the basic steps necessary | curves in fig. 1 have been obtained from egs. (9) and (10).
for calculating the response of an airplane to a discrete gust | These approximations, although rather accurate for the
is given in this appendix. lower values of s, are noted to cross; actually, they should

For accelerations and displacements: not cross and are known to have the same asymptotic

(1) With the use of the fundamental mode, wing plan | approach to unity.)
form, and mass distribution, calculate the quantities pq, pi, (4) From the following definitions:

A, 1, and r; as given by equations (18). Ay—pt-ed

(2) Choose the time interval e A convenient rule of 1= HoTm o
thumb is ezzl)\, but for most cases e=1 should give satis- An=260n-1 (m>1)
factory results, Bi=ridho

(3) Determine values of the unsteady-lift function =1 —¢ Ba=2r1efs_1 (m>1)
at successive multiple intervals of e (See fig. 1.) Also / ) .
determine corresponding values of the gust-force integral C’l=% (H_T +<77’—rl> ebo
f(s), equation (27b). As an aid, curves for f(s) are presented ! !
in figure 1 for the sharp-edge gust and in figure 14 for various- iy M a3 (ﬁ_ >
length sine gusts, sine? gusts, and triangular gusts. (The Cr=(m—1) 1 €N+2 o 1 (m>1)

1.0
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6 / 1Y
> ' !/ 2R \k
N 7 7 NSO T T rr-—-—-— —— Sine? gust
g A NR

A
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3 /[ \

4 i) LVH) 24—

r..l \ 4
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/ AN
Vi A
l/ )i W
/, . \
2 /l \E‘\ N
/1 S
7
I, :, —
A
/17
74w : (('1)—
0 5 10 15 20 25 30
S, half-chords .

(&) H=2.5 chords.

' s
Fraure 14.—Value of the gust-force integral f (s)=f uﬁ_ Y (8—o)do for three gust shapes.
0
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7
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(b) H=5 chords.
Fiauore 14.—Continued.
set up the following matrices: A TG 7]
-A1 1 03 /01
As 4, G G G
Ay A A | e
2 1 4 2 1
[A]= ; -
A 4; 4. A o
1
| | Then, calculate the matrix
_ - .- 1 A
B Y D=2 4 [0141B)
Bg B1 - - #
(5) Solve for the values of 8 (which equals z’’)} from
B; By B equation (33) By the method outlined after equation (33).
[Bl= B B B. B (See eq. (34).) - The values of 2 and « (which equals z,/’)
LRt e e can then be calculated from equations (31) and (32).
For bending moment:
(6) In order to compute bending moment, determine 74,
| . | 70, and 7, as given by equations (24), where My, My, M.,
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(c) H=17.5 chords.
Figure 14.—Continued.

and M, in these equations depend on the particular wing
station being considered and are given by equations (21).

(7) Determine bending moment by use of equations (23)
with the values of response already established. This
equation may be applied directly to any desired time value.
Maximum bendmg moment usually occurs very close to the
time when z is a muximum.
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